4. GPIO 使用

4.1. 简介

GPIO, 全称 General-Purpose Input/Output(通用输入输出),是一种软件运行期间能够动态配置和控制的通用引脚。 所有的 GPIO 在上电后的初始状态都是输入模式,可以通过软件设为上拉或下拉,也可以设置为中断脚,驱动强度都是可编程的,其核心是填充 GPIO bank 的方法和参数,并调用 gpiochip_add 注册到内核中。

本文以 GPIO0_B4 和 GPIO4_D5 这两个 GPIO 口为例写了一份简单操作 GPIO 口的驱动,在 SDK 的路径为:kernel/drivers/gpio/gpio-firefly.c,以下就以该驱动为例介绍 GPIO 的操作。

板子可能并没有真的引出 GPIO0_B4 和 GPIO4_D5,这里只是举例。

4.2. GPIO 引脚计算

iCore-3562JQ 有 5 组 GPIO bank:GPIO0~GPIO4,每组又以 A0~A7, B0~B7, C0~C7, D0~D7 作为编号区分,常用以下公式计算引脚:

GPIO 小组编号计算公式:number = group * 8 + X

GPIO pin 编号计算公式:pin = bank * 32 + number

下面演示GPIO4_D5 pin 脚计算方法:

bank = 4; //GPIO4_D5 => 4

group = 3; //GPIO4_D5 => 3 {(A=0), (B=1), (C=2), (D=3)}

X = 5; //GPIO4_D5 => 5

number = group * 8 + X = 3 * 8 + 5 = 29

pin = bank*32 + number= 4 * 32 + 29 = 157;

GPIO4_D5 对应的设备树属性描述为<&gpio4 29 IRQ_TYPE_EDGE_RISING>,由kernel/include/dt-bindings/pinctrl/rockchip.h的宏定义可知,也可以将 GPIO4_D5 描述为<&gpio4 RK_PD5 IRQ_TYPE_EDGE_RISING>

4.3. 用户空间使用 GPIO

当引脚没有被其它外设复用时, 我们可以通过export导出该引脚去使用。

# 将 gpio 编号写入 export
echo 157 > /sys/class/gpio/export

# 正常会生成一个 gpio+编号 文件夹
ls /sys/class/gpio/
export   gpiochip0    gpiochip255  gpiochip500  gpiochip96
gpio157  gpiochip128  gpiochip32   gpiochip64   unexport

# 查看该文件内属性
ls /sys/class/gpio/gpio157
active_low  device  direction  edge  power  subsystem  uevent  value

# 这个节点用于设置方向
cat /sys/class/gpio/gpio157/direction
in
echo out > /sys/class/gpio/gpio157/direction

# 这个节点用于设置电平值
cat /sys/class/gpio/gpio157/value
0
echo 1 > /sys/class/gpio/gpio157/value

4.4. 内核空间使用

首先在 DTS 文件中增加驱动的资源描述:

gpio_demo: gpio_demo {
    status = "okay";
    compatible = "firefly,rk356x-gpio";
    firefly-gpio = <&gpio0 12 GPIO_ACTIVE_HIGH>;          /* GPIO0_B4 */
    firefly-irq-gpio = <&gpio4 29 IRQ_TYPE_EDGE_RISING>;  /* GPIO4_D5 */
};

这里定义了一个脚作为一般的输出输入口:

firefly-gpio = <&gpio0 12 GPIO_ACTIVE_HIGH>;

GPIO_ACTIVE_HIGH 表示高电平有效,如果想要低电平有效,可以改为:GPIO_ACTIVE_LOW,这个属性将被驱动所读取。

然后在 probe 函数中对 DTS 所添加的资源进行解析,代码如下:

static int firefly_gpio_probe(struct platform_device *pdev)
{
    int ret;
    int gpio;
    enum of_gpio_flags flag;
    struct firefly_gpio_info *gpio_info;
    struct device_node *firefly_gpio_node = pdev->dev.of_node;

    printk("Firefly GPIO Test Program Probe\n");
    gpio_info = devm_kzalloc(&pdev->dev,sizeof(struct firefly_gpio_info), GFP_KERNEL);
    if (!gpio_info) {
        return -ENOMEM;
    }
    gpio = of_get_named_gpio_flags(firefly_gpio_node, "firefly-gpio", 0, &flag);
    if (!gpio_is_valid(gpio)) {
        printk("firefly-gpio: %d is invalid\n", gpio); return -ENODEV;
    }
    if (gpio_request(gpio, "firefly-gpio")) {
        printk("gpio %d request failed!\n", gpio);
        gpio_free(gpio);
        return -ENODEV;
    }
    gpio_info->firefly_gpio = gpio;
    gpio_info->gpio_enable_value = (flag == OF_GPIO_ACTIVE_LOW) ? 0:1;
    gpio_direction_output(gpio_info->firefly_gpio, gpio_info->gpio_enable_value);
    printk("Firefly gpio putout\n");
    ...
}

of_get_named_gpio_flags 从设备树中读取 firefly-gpiofirefly-irq-gpio 的 GPIO 配置编号和标志,gpio_is_valid 判断该 GPIO 编号是否有效,gpio_request 则申请占用该 GPIO。如果初始化过程出错,需要调用 gpio_free 来释放之前申请过且成功的 GPIO 。在驱动中调用 gpio_direction_output 就可以设置输出高还是低电平,这里默认输出从 DTS 获取得到的有效电平 GPIO_ACTIVE_HIGH,即为高电平,如果驱动正常工作,可以用万用表测得对应的引脚应该为高电平。实际中如果要读出 GPIO,需要先设置成输入模式,然后再读取值:

int val;
gpio_direction_input(your_gpio);
val = gpio_get_value(your_gpio);

下面是常用的 GPIO API 定义:

#include <linux/gpio.h>
#include <linux/of_gpio.h>

enum of_gpio_flags {
     OF_GPIO_ACTIVE_LOW = 0x1,
};
int of_get_named_gpio_flags(struct device_node *np, const char *propname,
int index, enum of_gpio_flags *flags);
int gpio_is_valid(int gpio);
int gpio_request(unsigned gpio, const char *label);
void gpio_free(unsigned gpio);
int gpio_direction_input(int gpio);
int gpio_direction_output(int gpio, int v);

4.5. 中断

在 Firefly 的例子程序中还包含了一个中断引脚,GPIO 口的中断使用与 GPIO 的输入输出类似,首先在 DTS 文件中增加驱动的资源描述:

firefly-irq-gpio = <&gpio4 29 IRQ_TYPE_EDGE_RISING>;  /* GPIO4_D5 */

IRQ_TYPE_EDGE_RISING 表示中断由上升沿触发,当该引脚接收到上升沿信号时可以触发中断函数。 这里还可以配置成如下:

IRQ_TYPE_NONE         //默认值,无定义中断触发类型
IRQ_TYPE_EDGE_RISING  //上升沿触发
IRQ_TYPE_EDGE_FALLING //下降沿触发
IRQ_TYPE_EDGE_BOTH    //上升沿和下降沿都触发
IRQ_TYPE_LEVEL_HIGH   //高电平触发
IRQ_TYPE_LEVEL_LOW    //低电平触发

然后在 probe 函数中对 DTS 所添加的资源进行解析,再做中断的注册申请,代码如下:

static int firefly_gpio_probe(struct platform_device *pdev)
{
	int ret;
   	int gpio;
   	enum of_gpio_flags flag;
    	struct firefly_gpio_info *gpio_info;
    	struct device_node *firefly_gpio_node = pdev->dev.of_node;
    	...

    	gpio_info->firefly_irq_gpio = gpio;
    	gpio_info->firefly_irq_mode = flag;
   	gpio_info->firefly_irq = gpio_to_irq(gpio_info->firefly_irq_gpio);
   	if (gpio_info->firefly_irq) {
       		if (gpio_request(gpio, "firefly-irq-gpio")) {
          	printk("gpio %d request failed!\n", gpio); gpio_free(gpio); return IRQ_NONE;
        }
        ret = request_irq(gpio_info->firefly_irq, firefly_gpio_irq, flag, "firefly-gpio", gpio_info);
        if (ret != 0) free_irq(gpio_info->firefly_irq, gpio_info);
           dev_err(&pdev->dev, "Failed to request IRQ: %d\n", ret);
    	}
    	return 0;
}
static irqreturn_t firefly_gpio_irq(int irq, void *dev_id) //中断函数
{
   	printk("Enter firefly gpio irq test program!\n");
    	return IRQ_HANDLED;
}

调用 gpio_to_irq 把 GPIO 的 PIN 值转换为相应的 IRQ 值,调用 gpio_request 申请占用该 IO 口,调用 request_irq 申请中断,如果失败要调用 free_irq 释放,该函数中 gpio_info-firefly_irq 是要申请的硬件中断号,firefly_gpio_irq 是中断函数,gpio_info->firefly_irq_mode 是中断处理的属性,firefly-gpio 是设备驱动程序名称,gpio_info 是该设备的 device 结构,在注册共享中断时会用到。

4.6. 复用

GPIO 口除了通用输入输出、中断功能外,还可能有其它复用功能,如 GPIO0_B4, 除了 GPIO 的功能,它还能作为 I2C1_SDA_M0

那么在使用作 GPIO 口时,就需要注意是否被复用为其他功能了。

例如使用 GPIO0_B4 作 GPIO 功能时就需要在设备树中将 I2C1 disabled 掉。

&i2c1 {
    status = "disabled";
};

gpio_demo: gpio_demo {
    status = "okay";
    compatible = "firefly,rk356x-gpio";
    firefly-gpio = <&gpio0 12 GPIO_ACTIVE_HIGH>;          /* GPIO0_B4 */
    firefly-irq-gpio = <&gpio4 29 IRQ_TYPE_EDGE_RISING>;  /* GPIO4_D5 */
};

复用的设置是通过 pinctrl 框架来实现的。在 i2c1 的设备树节点中有这样两行属性:

pinctrl-names = "default";
pinctrl-0 = <&i2c1m0_xfer>;

这就是设置了 pinctrl,其中 i2c1m0_xfer 定义在 rk3562-pinctrl.dtsi 中:

i2c1 {
    /omit-if-no-ref/
    i2c1m0_xfer: i2c1m0-xfer {
        rockchip,pins =
            /* i2c1_scl_m0 */
            <0 RK_PB3 1 &pcfg_pull_none_smt>,
            /* i2c1_sda_m0 */
            <0 RK_PB4 1 &pcfg_pull_none_smt>; // 这里就设置了 GPIO0_B4 为 func1,即 i2c1_sda_m0 功能
    };
	...
};

所以如果没有 disabled 掉 i2c1 的话,i2c1 中的 pinctrl 就会生效,将 GPIO0_B4 配置成了 i2c 的功能。

更多内容请查看文档 SDK/docs/cn/Common/PINCTRL/Rockchip_Developer_Guide_Linux_Pinctrl_CN.pdf

4.7. 调试方法

4.7.1. IO 指令

GPIO 调试有一个很好用的工具,那就是 IO 指令,iCore-3562JQ 的系统默认已经内置了 IO 指令,使用 IO 指令可以实时读取或写入每个 IO 口的状态,这里简单介绍 IO 指令的使用。首先查看 IO 指令的帮助:

#io --help
Unknown option: ?
Raw memory i/o utility - $Revision: 1.5 $

io -v -1|2|4 -r|w [-l <len>] [-f <file>] <addr> [<value>]

   -v         Verbose, asks for confirmation
   -1|2|4     Sets memory access size in bytes (default byte)
   -l <len>   Length in bytes of area to access (defaults to
              one access, or whole file length)
   -r|w       Read from or Write to memory (default read)
   -f <file>  File to write on memory read, or
              to read on memory write
   <addr>     The memory address to access
   <val>      The value to write (implies -w)

Examples:
   io 0x1000                  Reads one byte from 0x1000
   io 0x1000 0x12             Writes 0x12 to location 0x1000
   io -2 -l 8 0x1000          Reads 8 words from 0x1000
   io -r -f dmp -l 100 200    Reads 100 bytes from addr 200 to file
   io -w -f img 0x10000       Writes the whole of file to memory

Note access size (-1|2|4) does not apply to file based accesses.

从帮助上可以看出,如果要读或者写一个寄存器,可以用:

io -4 -r 0x1000 //读从0x1000起的4位寄存器的值
io -4 -w 0x1000 //写从0x1000起的4位寄存器的值

使用示例:

  • 查看 GPIO1_B3 引脚的复用情况

  • 从主控的 datasheet 查到 GPIO1 对应寄存器基地址为:0xff320000

  • 从主控的 datasheet 查到 GPIO1B_IOMUX 的偏移量为:0x00014

  • GPIO1_B3 的 iomux 寄存器地址为:基址(Operational Base) + 偏移量(offset)=0xff320000+0x00014=0xff320014

  • 用以下指令查看GPIO1_B3的复用情况:

# io -4 -r 0xff320014
ff320014:  0000816a
  • 从datasheet查到[7:6]:

gpio1b3_sel
GPIO1B[3] iomux select
2'b00: gpio
2'b01: i2c4sensor_sda
2'b10: reserved
2'b11: reserved

因此可以确定该 GPIO 被复用为 i2c4sensor_sda。

  • 如果想复用为 GPIO,可以使用以下指令设置:

# io -4 -w 0xff320014 0x0000812a

4.7.2. Debugfs

Debugfs 文件系统目的是为开发人员提供更多内核数据,方便调试。 这里 GPIO 的调试也可以用 Debugfs 文件系统,获得更多的内核信息。GPIO 在 Debugfs 文件系统中的接口为 /sys/kernel/debug/gpio

4.8. FAQs

4.8.1. Q1: 如何将 PIN 的 MUX 值切换为一般的 GPIO?

A1: 当使用 GPIO request 时候,会将该 PIN 的 MUX 值强制切换为 GPIO,所以使用该 PIN 脚为 GPIO 功能的时候确保该 PIN 脚没有被其他模块所使用。

4.8.2. Q2: 为什么我用 IO 指令读出来的值都是 0x00000000?

A2: 如果用 IO 命令读某个 GPIO 的寄存器,读出来的值异常,如 0x00000000 或 0xffffffff 等,请确认该 GPIO 的 CLK 是不是被关了,GPIO 的 CLK 是由 CRU 控制,可以通过读取 datasheet 下面 CRU_CLKGATE_CON* 寄存器来查到 CLK 是否开启,如果没有开启可以用 io 命令设置对应的寄存器,从而打开对应的 CLK,打开 CLK 之后应该就可以读到正确的寄存器值了。

4.8.3. Q3: 测量到 PIN 脚的电压不对应该怎么查?

A3: 测量该 PIN 脚的电压不对时,如果排除了外部因素,可以确认下该 PIN 所在的 IO 电压源是否正确。