2. RKNN Toolkit¶
Rockchip提供RKNN-Toolkit开发套件进行模型转换、推理运行和性能评估。
用户通过提供的 python 接口可以便捷地完成以下功能:
1)模型转换:支持 Caffe、Tensorflow、TensorFlow Lite、ONNX、Darknet 模型,支持RKNN 模型导入导出,后续能够在硬件平台上加载使用。
2)模型推理:能够在 PC 上模拟运行模型并获取推理结果,也可以在指定硬件平台RK3399Pro Linux上运行模型并获取推理结果。
3)性能评估:能够在 PC 上模拟运行并获取模型总耗时及每一层的耗时信息,也可以通过联机调试的方式在指定硬件平台 RK3399Pro Linux上运行模型,并获取模型在硬件上运行时的总时间和每一层的耗时信息。
RKNN Tookit仅支持Linux系统,可在3399pro开发板或PC上使用。
2.1. 程序安装¶
2.1.1. 在PC中安装¶
RKNN Toolkit可从此链接中下载:https://github.com/rockchip-linux/rknn-toolkit 安装方法请查看 doc/ 目录下的指导文件。
2.1.2. 在板子上安装¶
因为 板子因存储空间和CPU性能限制,而且 RKNN Toolkit 安装过程非常困难, 所以推荐安装在板子上安装 RKNN Toolkit Lite 只负责推理部分。
2.2. API调用流程¶
2.2.1. 模型转换¶
模型转换使用示例如下,详细请参考RKNN Tookit中的example。
from rknn.api import RKNN
INPUT_SIZE = 64
if __name__ == '__main__':
# 创建RKNN执行对象
rknn = RKNN()
# 配置模型输入,用于NPU对数据输入的预处理
# channel_mean_value='0 0 0 255',那么模型推理时,将会对RGB数据做如下转换
# (R - 0)/255, (G - 0)/255, (B - 0)/255。推理时,RKNN模型会自动做均值和归一化处理
# reorder_channel=’0 1 2’用于指定是否调整图像通道顺序,设置成0 1 2即按输入的图像通道顺序不做调整
# reorder_channel=’2 1 0’表示交换0和2通道,如果输入是RGB,将会被调整为BGR。如果是BGR将会被调整为RGB
#图像通道顺序不做调整
rknn.config(channel_mean_value='0 0 0 255', reorder_channel='0 1 2')
# 加载TensorFlow模型
# tf_pb='digital_gesture.pb'指定待转换的TensorFlow模型
# inputs指定模型中的输入节点
# outputs指定模型中输出节点
# input_size_list指定模型输入的大小
print('--> Loading model')
rknn.load_tensorflow(tf_pb='digital_gesture.pb',
inputs=['input_x'],
outputs=['probability'],
input_size_list=[[INPUT_SIZE, INPUT_SIZE, 3]])
print('done')
# 创建解析pb模型
# do_quantization=False指定不进行量化
# 量化会减小模型的体积和提升运算速度,但是会有精度的丢失
print('--> Building model')
rknn.build(do_quantization=False)
print('done')
# 导出保存rknn模型文件
rknn.export_rknn('./digital_gesture.rknn')
# Release RKNN Context
rknn.release()
2.2.2. 模型推理¶
模型推理使用示例如下,详细请参考RKNN Tookit中的example。
import numpy as np
from PIL import Image
from rknn.api import RKNN
# 解析模型的输出,获得概率最大的手势和对应的概率
def get_predict(probability):
data = probability[0][0]
data = data.tolist()
max_prob = max(data)
return data.index(max_prob), max_prob
def load_model():
# 创建RKNN对象
rknn = RKNN()
# 载入RKNN模型
print('-->loading model')
rknn.load_rknn('./digital_gesture.rknn')
print('loading model done')
# 初始化RKNN运行环境
print('--> Init runtime environment')
ret = rknn.init_runtime(target='rk3399pro')
if ret != 0:
print('Init runtime environment failed')
exit(ret)
print('done')
return rknn
def predict(rknn):
im = Image.open("../picture/6_7.jpg") # 加载图片
im = im.resize((64, 64),Image.ANTIALIAS) # 图像缩放到64x64
mat = np.asarray(im.convert('RGB')) # 转换成RGB格式
outputs = rknn.inference(inputs=[mat]) # 运行推理,得到推理结果
pred, prob = get_predict(outputs) # 将推理结果转化为可视信息
print(prob)
print(pred)
if __name__=="__main__":
rknn = load_model()
predict(rknn)
rknn.release()
2.3. API¶
详细的API请参考RKNN-Toolkit中的使用指南文档:《RKNN-Toolkit使用指南_V*.pdf》。